Reg. No. : \square

Question Paper Code : X 60373

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Third Semester
Computer Science and Engineering
CS 2202/CS 34/EC 1206 A/080230012/10144 CS 303 - DIGITAL PRINCIPLES AND SYSTEM DESIGN
(Common to Information Technology)
(Regulations 2008/2010)
(Also common to PTCS 2202 - Digital Principles and System Design for B.E. (Part-Time) - Second Semester - CSE - Regulations 2009)

Time : Three Hours
Maximum : 100 Marks
Answer ALL questions
PART - A
(10×2=20 Marks)

1. Convert the binary number 10111011 into gray code.
2. What is meant by duality in Boolean algebra ?
3. Implement a full adder with two half adders.
4. Implement a 4 -bit even parity checker.
5. Draw the truth table and circuit diagram of 4 to 2 encoder.
6. Distinguish EEPROM and flash memory.
7. Derive the characteristic equation of a JK-flipflop.
8. What is a Mealy circuit?
9. State One Hot State Assignment.
10. Compare the ASM chart with a conventional flowchart.
PART - B
(5×16=80 Marks)
11. a) Simplify the following Boolean function using Quine-McClusky method $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum \mathrm{m}(0,1,3,7,13,14,21,26,28)+\sum \mathrm{d}(2,5,9,11,17,24)$.
(OR)
b) i) Simplify the given Boolean function in POS form using K-map and draw the logic diagram using only NOR gates.

$$
\begin{equation*}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(0,1,4,7,8,10,12,15)+\mathrm{d}(2,6,11,14) . \tag{10}
\end{equation*}
$$

ii) Convert 78.5_{10} into binary.
iii) Find the dual and complement of the following Boolean expression $x y z '+x^{\prime} y z+z(x y+w)$.
12. a) i) With the neat diagram, discuss the working principle of carry look-ahead adder.
ii) Design a 4-bit adder using three full adders and one half adder. (OR)
b) i) Write the VHDL code for BCD-to- 7 segment code convertors, using a selected signal assignment.
ii) Write test bench for half adder circuit.
13. a) i) Write notes on PLA and PAL.
ii) Implement $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,3,4,11,12,13,14,15)$ using 8×1 multiplexer. (OR)
b) i) Write notes on RAM, its operations and its types.
ii) Design a 4-input priority encoder.
14. a) Design a sequential circuit with two T-flip flops A and B, one input X and one output Z is specified by the following next state and output equation is
$\mathrm{A}(\mathrm{t}+1)=\mathrm{BX}^{\prime}+\mathrm{B}^{\prime} \mathrm{X}$
$B(t+1)=A B+B X+A X$
$Z=A X^{\prime}+A^{\prime} B^{\prime} X$
i) Draw the logic diagram of the circuit.
ii) List the state table for the sequential circuit.
iii) Draw the corresponding state diagram.
(OR)
b) i) Draw and explain the parallel in serial out shift register and explain.
ii) Draw the block diagram of Johnson counter and explain.
15. a) i) Explain the types of hazards in digital circuits.
ii) Implement the switching function $\mathrm{F}=\sum \mathrm{m}(1,3,5,7,8,9,14,15)$ by a static hazard free 2 level AND-OR gate network.
(OR)
b) Explain the steps for the design of asynchronous sequential circuits.

